Solution of Non-linear equation by Bisection Method
Algorithm:
- Declare and initialize necessary variables like up_range, mid, low_range etc.
- Read the range( upper and lower) from user within which the root of the equation is to be calculated.
- If root lies within the range? if yes: go to step 4. if no: go to step 2
- Calculate the mid value of upper and lower range, mid = (upper+lower)/2
- Calculate the functional value at mid i.e. func(mid).
- If func(mid)*func(low_range) is less than zero, then replace upper range by mid else replace lower range by mid
- Display the no of iteration and root
- if func(mid) is very small? yes: go to step 9. No: go to step 4
- Display the value of most closest and accurate root.
Source Code:
#include
#include
//function that returns the functional value
float func(float x){
return (pow(x,3)+5*pow(x,2)-7);
}
int main(){
float up_range, low_range, mid;
int i = 0; //no of iteration
printf("Enter the range: ");
scanf("%f%f",&up_range,&low_range);
while(func(up_range)*func(low_range) > 0){ //repeatadly read until the range has root
printf("\nThis range doesnot contains any root");
printf("\nEnter again the range: ");
scanf("%f%f",&up_range,&low_range);
}
do{
mid = (up_range + low_range) / 2;
if(func(low_range) * func(mid) < 0){ //if signs of mid and low_range is
up_range = mid; //different, replace up_range by mid
}else{ //else raplace, low_range by mid
low_range = mid;
}
i++;
printf("\nAt iteration: %d, root = %f",i,mid);
}while(fabs(func(mid))> 0.0001);
printf("\nThe root of the equation is %f", mid);
return 0;
}