Theoretical Paper
- Computer Organization
- Data Structure
- Digital Electronics
- Object Oriented Programming
- Discrete Mathematics
- Graph Theory
- Operating Systems
- Software Engineering
- Computer Graphics
- Database Management System
- Operation Research
- Computer Networking
- Image Processing
- Internet Technologies
- Micro Processor
- E-Commerce & ERP
- Dart Programming
- Flutter Tutorial
- Numerical Methods Tutorials
Practical Paper
Industrial Training
Secant Method
Newton Raphson is good general purpose root finding method, but sometimes if function is very complicated then computing derivates will take much computational time, so to overcome this issue, in secant method we approximate the first order derivative term f’(r). Algorithm is more or less similar to secant method
Given an equation f(x) = 0 Let the initial guesses be x0 and x1 Do xi+1= xi - ( f(xi) * (xi - xi-1) ) / ( f(xi) - f(xi-1) ) while (none of the convergence criterion C1 or C2 is met)
Convergence criterias are:-
- C1. Fixing apriori the total number of iterations N.
- C2. By testing the condition |xi+1−xi| (where i is the iteration number) less than some tolerance limit, say epsilon, fixed threshold.
C Implementation
#include< stdio.h> #include< math.h> #define f(x) (pow(x,3)-18) int main(){ float x0,x1,x2,error; int i=0; printf("Input Two Approximations: "); scanf("%f %f",&x0,&x1); printf("Ite\tX0\t\tX1\t\tf(X0)\t\tf(X1)\t\tError\n"); do{ x2=((x0*f(x1))-((x1)*f(x0)))/((f(x1)-f(x0))); printf("%2d\t%4.6f\t%4.6f\t%4.6f\t%4.6f\t%4.6f\n",i++,x0,x1,f(x0),f(x1),error); error=fabs((x2)-(x1)); x0=x1; x1=x2; }while(error>0.00005); return 0; }
Output
Input Two Approximations: 1 2 Ite X0 X1 f(X0) f(X1) Error 0 1.000000 2.000000 -17.000000 -10.000000 0.000000 1 2.000000 3.428571 -10.000000 22.303208 1.428571 2 3.428571 2.442238 22.303208 -3.433201 0.986333 3 2.442238 2.573814 -3.433201 -0.949728 0.131575 4 2.573814 2.624131 -0.949728 0.069927 0.050317 5 2.624131 2.620680 0.069927 -0.001263 0.003451 6 2.620680 2.620741 -0.001263 -0.000001 0.000061
With this discussion, this series on solution of non linear equations with Iterative Methods concludes.