Theoretical Paper
- Computer Organization
- Data Structure
- Digital Electronics
- Object Oriented Programming
- Discrete Mathematics
- Graph Theory
- Operating Systems
- Software Engineering
- Computer Graphics
- Database Management System
- Operation Research
- Computer Networking
- Image Processing
- Internet Technologies
- Micro Processor
- E-Commerce & ERP
Practical Paper
Industrial Training
concatenate one linked list at end of another
/* CH4PR8.C: Program to concatenate one linked list at end of another and
than to erase all nodes present in the linked list */
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct node
{
int data ;
struct node *link ;
} ;
void append ( struct node **, int ) ;
void concat ( struct node **, struct node ** ) ;
void display ( struct node * ) ;
int count ( struct node * ) ;
struct node * erase ( struct node * ) ;
void main( )
{
struct node *first, *second ;
first = second = NULL ; /* empty linked lists */
append ( &first, 1 ) ;
append ( &first, 2 ) ;
append ( &first, 3 ) ;
append ( &first, 4 ) ;
clrscr( ) ;
printf ( "\nFirst List : " ) ;
display ( first ) ;
printf ( "\nNo. of elements in the first Linked List = %d",
count ( first ) ) ;
append ( &second, 5 ) ;
append ( &second, 6 ) ;
append ( &second, 7 ) ;
append ( &second, 8 ) ;
printf ( "\n\nSecond List : " ) ;
display ( second ) ;
printf ( "\nNo. of elements in the second Linked List = %d",
count ( second ) ) ;
/* the result obtained after concatenation is in the first list */
concat ( &first, &second ) ;
printf ( "\n\nConcatenated List : " ) ;
display ( first ) ;
printf ( "\n\nNo. of elements in Linked List before erasing = %d",
count ( first ) ) ;
first = erase ( first ) ;
printf ( "\nNo. of elements in Linked List after erasing = %d",
count ( first ) ) ;
}
/* adds a node at the end of a linked list */
void append ( struct node **q, int num )
{
struct node *temp ;
temp = *q ;
if ( *q == NULL ) /* if the list is empty, create first node */
{
*q = malloc ( sizeof ( struct node ) ) ;
temp = *q ;
}
else
{
/* go to last node */
while ( temp -> link != NULL )
temp = temp -> link ;
/* add node at the end */
temp -> link = malloc ( sizeof ( struct node ) ) ;
temp = temp -> link ;
}
/* assign data to the last node */
temp -> data = num ;
temp -> link = NULL ;
}
/* concatenates two linked lists */
void concat ( struct node **p, struct node **q )
{
struct node *temp ;
/* if the first linked list is empty */
if ( *p == NULL )
*p = *q ;
else
{
/* if both linked lists are non-empty */
if ( *q != NULL )
{
temp = *p ; /* points to the starting of the first list */
/* traverse the entire first linked list */
while ( temp -> link != NULL )
temp = temp -> link ;
temp -> link = *q ; /* concatenate the second list after the
first */
}
}
}
/* displays the contents of the linked list */
void display ( struct node *q )
{
printf ( "\n" ) ;
/* traverse the entire linked list */
while ( q != NULL )
{
printf ( "%d ", q -> data ) ;
q = q -> link ;
}
}
/* counts the number of nodes present in the linked list */
int count ( struct node *q )
{
int c = 0 ;
/* traverse the entire linked list */
while ( q != NULL )
{
q = q -> link ;
c++ ;
}
return c ;
}
/* erases all the nodes from a linked list */
struct node * erase ( struct node *q )
{
struct node *temp ;
/* traverse till the end erasing each node */
while ( q != NULL )
{
temp = q ;
q = q -> link ;
free ( temp ) ; /* free the memory occupied by the node */
}
return NULL ;
}