Industrial Training




Deterministic Probabilistic Dynamic Programming

In mathematics, computer science, economics, and bioinformatics, dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems. It is applicable to problems exhibiting the properties of overlapping subproblems[1] and optimal substructure (described below). When applicable, the method takes far less time than other methods that don't take advantage of the subproblem overlap (like depth-first search).

In order to solve a given problem, using a dynamic programming approach, we need to solve different parts of the problem (subproblems), then combine the solutions of the subproblems to reach an overall solution. Often when using a more naive method, many of the subproblems are generated and solved many times. The dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of computations: once the solution to a given subproblem has been computed, it is stored or "memo-ized": the next time the same solution is needed, it is simply looked up. This approach is especially useful when the number of repeating subproblems grows exponentiallyas a function of the size of the input.

Dynamic programming algorithms are used for optimization (for example, finding the shortest path between two points, or the fastest way to multiply many matrices). A dynamic programming algorithm will examine the previously solved subproblems and will combine their solutions to give the best solution for the given problem. The alternatives are many, such as using a greedy algorithm, which picks the locally optimal choice at each branch in the road. The locally optimal choice may be a poor choice for the overall solution. While a greedy algorithm does not guarantee an optimal solution, it is often faster to calculate. Fortunately, some greedy algorithms (such as minimum spanning trees) are proven to lead to the optimal solution.

For example, let's say that you have to get from point A to point B as fast as possible, in a given city, during rush hour. A dynamic programming algorithm will look at finding the shortest paths to points close to A, and use those solutions to eventually find the shortest path to B. On the other hand, a greedy algorithm will start you driving immediately and will pick the road that looks the fastest at every intersection. As you can imagine, this strategy might not lead to the fastest arrival time, since you might take some "easy" streets and then find yourself hopelessly stuck in a traffic jam.




Hi I am Pluto.