Theoretical Paper
- Computer Organization
 - Data Structure
 - Digital Electronics
 - Object Oriented Programming
 - Discrete Mathematics
 - Graph Theory
 - Operating Systems
 - Software Engineering
 - Computer Graphics
 - Database Management System
 - Operation Research
 - Computer Networking
 - Image Processing
 - Internet Technologies
 - Micro Processor
 - E-Commerce & ERP
 
Practical Paper
Industrial Training
R - Matrices
Matrices are the R objects in which the elements are arranged in a two-dimensional rectangular layout. They contain elements of the same atomic types. Though we can create a matrix containing only characters or only logical values, they are not of much use. We use matrices containing numeric elements to be used in mathematical calculations.
A Matrix is created using the matrix() function.
Syntax
The basic syntax for creating a matrix in R is −matrix(data, nrow, ncol, byrow, dimnames)
Following is the description of the parameters used −
- data is the input vector which becomes the data elements of the matrix.
 - nrow is the number of rows to be created.
 - ncol is the number of columns to be created.
 - byrow is a logical clue. If TRUE then the input vector elements are arranged by row.
 - dimname is the names assigned to the rows and columns.
 
Example
Create a matrix taking a vector of numbers as input.
# Elements are arranged sequentially by row.
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print(M)
# Elements are arranged sequentially by column.
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print(N)
# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P
When we execute the above code, it produces the following result −
     [,1] [,2] [,3]
[1,]    3    4    5
[2,]    6    7    8
[3,]    9   10   11
[4,]   12   13   14
     [,1] [,2] [,3]
[1,]    3    7   11
[2,]    4    8   12
[3,]    5    9   13
[4,]    6   10   14
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14
Accessing Elements of a Matrix
Elements of a matrix can be accessed by using the column and row index of the element. We consider the matrix P above to find the specific elements below.
# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")
# Create the matrix.
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
# Access the element at 3rd column and 1st row.
print(P[1,3])
# Access the element at 2nd column and 4th row.
print(P[4,2])
# Access only the  2nd row.
print(P[2,])
# Access only the 3rd column.
print(P[,3])
When we execute the above code, it produces the following result −
[1] 5 [1] 13 col1 col2 col3 6 7 8 row1 row2 row3 row4 5 8 11 14
Matrix Computations
Various mathematical operations are performed on the matrices using the R operators. The result of the operation is also a matrix.
The dimensions (number of rows and columns) should be same for the matrices involved in the operation.
Matrix Addition & Subtraction
# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print(matrix1)
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print(matrix2)
# Add the matrices.
result <- matrix1 + matrix2
cat("Result of addition","\n")
print(result)
# Subtract the matrices
result <- matrix1 - matrix2
cat("Result of subtraction","\n")
print(result)
When we execute the above code, it produces the following result −
     [,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of addition 
     [,1] [,2] [,3]
[1,]    8   -1    5
[2,]   11   13   10
Result of subtraction 
     [,1] [,2] [,3]
[1,]   -2   -1   -1
[2,]    7   -5    2
Matrix Multiplication & Division
# Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2)
print(matrix1)
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2)
print(matrix2)
# Multiply the matrices.
result <- matrix1 * matrix2
cat("Result of multiplication","\n")
print(result)
# Divide the matrices
result <- matrix1 / matrix2
cat("Result of division","\n")
print(result)
When we execute the above code, it produces the following result −
     [,1] [,2] [,3]
[1,]    3   -1    2
[2,]    9    4    6
     [,1] [,2] [,3]
[1,]    5    0    3
[2,]    2    9    4
Result of multiplication 
     [,1] [,2] [,3]
[1,]   15    0    6
[2,]   18   36   24
Result of division 
     [,1]      [,2]      [,3]
[1,]  0.6      -Inf 0.6666667
[2,]  4.5 0.4444444 1.5000000
