Theoretical Paper
- Computer Organization
- Data Structure
- Digital Electronics
- Object Oriented Programming
- Discrete Mathematics
- Graph Theory
- Operating Systems
- Software Engineering
- Computer Graphics
- Database Management System
- Operation Research
- Computer Networking
- Image Processing
- Internet Technologies
- Micro Processor
- E-Commerce & ERP
- Numerical Methods Tutorial
Practical Paper
- C Programming
- C
- Data Structure Using C, C ++
- Programming in R
- Programming with Python
- Machine Learning
- Swift
- Firebase
- Android
- iOS Development
- Django
- PHP
- Arduino
- Internet of Technology
- IOT Projects
- Dart Programming
- Flutter
- Flutter Tutorials
- Kotlin Tutorial
- Laravel Tutorial
- VueJS Tutorial
- Go Lang
- Rust
- Apex
Industrial Training
mca SyllabusEngineering Science Basic Electrical and Electronics Engineering-I Basic Electrical Engineering-I DC Network Theorem: Definition of electric circuit, network, linear circuit, non-linear circuit, bilateral circuit, unilateral circuit, Dependent source, Kirchhoff’s law, Principle of superposition. Source equivalence and conversion, Thevenin’s theorem, Norton Theorem, nodal analysis, mesh analysis, stardelta conversion. Maximum power transfer theorem with proof. 7L Electromagnetism: Biot-savart law, Ampere’s circuital law, field calculation using Biot-savart & ampere’s circuital law. Magnetic circuits, Analogous quantities in magnetic and electric circuits, Faraday’s law, Self and mutual inductance. Energy stored in a magnetic field, B-H curve, Hysteretic and Eddy current losses, Lifting power of Electromagnet. 5L AC fundamental: Production of alternating voltage, waveforms, average and RMS values, peak factor, form factor, phase and phase difference, phasor representation of alternating quantities, phasor diagram, behavior of AC series , parallel and series parallel circuits, Power factor, Power in AC circuit, Effect of frequency variation in RLC series and parallel circuits, Resonance in RLC series and parallel circuit, Q factor, band width of resonant circuit. 9L Basic Electronics Engineering-I Instruction: 1 credit means 1 hour; 1 lecture means a lecture of 1 hour duration. Recapitulation and Orientation lectures: 2L Module – 1: Semiconductors: 4L Module – 2: Diodes and Diode Circuits: 3L+3L = 6L Module – 3: Bipolar Junction Transistors: 6L+2L = 8L Outcome: Students must be able to explain the junction properties and the phenomenon of rectification, draw the I-V characteristics and identify operating points; Calculate ripple factors, efficiency of power supplies. Students will be able to draw and explain the I-V characteristics of BJTs – both input and output; learn to bias transistors, both as amplifiers and switches; identify operating points. Recommended Books: |