Industrial Training

mca Syllabus

Communication Engineering & Coding Theory
Code: CS401
Contacts: 3L
Credits: 3

Module - 1: Elements of Communication system, Analog Modulation & Demodulation, Noise, SNR Analogto- Digital Conversion. (Basic ideas in brief) [8]
[Details: Introduction to Base Band transmission & Modulation (basic concept) (1L); Elements of Communication systems (mention of transmitter, receiver and channel); origin of noise and its effect, Importance of SNR in system design (1L); Basic principles of Linear Modulation (Amplitude Modulation) (1L); Basic principles of Non-linear modulation (Angle Modulation - FM, PM) (1L); Sampling theorem, Sampling rate, Impulse sampling, Reconstruction from samples, Aliasing (1L); Analog Pulse Modulation - PAM (Natural & flat topped sampling), PWM, PPM (1L); Basic concept of Pulse Code Modulation, Block diagram of PCM (1L); Multiplexing - TDM, FDM (1L);

Module - 2: Digital Transmission: [8]
[Details: Concept of Quantisation & Quantisation error, Uniform Quantiser (1L); Non-uniform Quantiser, Alaw & law companding (mention only) (1L); Encoding, Coding efficiency (1L); Line coding & properties, NRZ & RZ, AMI, Manchester coding PCM, DPCM (1L); Baseband Pulse Transmission, Matched filter (mention of its importance and basic concept only), Error rate due to noise (2L); ISI, Raised cosine function, Nyquist criterion for distortion-less base-band binary transmission, Eye pattern, Signal power in binary digital signals (2L);

Module - 3: Digital Carrier Modulation & Demodulation Techniques: [8]
[Details: Bit rate, Baud rate (1L); Information capacity, Shanon’s limit (1L); M-ary encoding, Introduction to the different digital modulation techniques - ASK, FSK, PSK, BPSK, QPSK, mention of 8 BPSK, 16 BPSK (2L); Introduction to QAM, mention of 8QAM, 16 QAM without elaboration (1L); Delta modulation, Adaptive delta modulation (basic concept and importance only, no details (1L); introduction to the concept of DPCM, Delta Modulation, Adaptive Delta modulation and their relevance (1L); Spread Spectrum Modulation – concept only. (1L).

Module - 4: Information Theory & Coding: [8]
[Details: Introduction, News value & Information content (1L);, Entropy (1L);, Mutual information (1L);, Information rate (1L);, Shanon-Fano algorithm for encoding (1L);, Shannon's Theorem - Source Coding Theorem (1L);, Channel Coding Theorem, Information Capacity Theorem (basic understanding only) (1L);; Error Control & Coding - basic principle only. (1L);
Text Books:
1. An Introduction to Analog and Digital Communications by Simon Haykin; Published by Wiley India.
2. Data Communication and Networking by Behrouz A. Forouzan, Published by Tata McGraw-Hill

References:
1. Communication Systems 4th Edition by Simon Haykin; Published by Wiley India (Student Edition)
2. Principles and Analog and Digital Communication by Jerry D Gibson, Published by MacMillan.
3. Communication Systems by A. B. Carlson, Published by McGraw-Hill.
4. Understanding Signals and Systems by Jack Golten, Published by McGraw Hill.

Learning Outcome: [These are the minimum competence to be developed; the students will be encouraged to learn more and acquire better understanding.]
Module -1: The student will be able to differentiate between base-band transmission and modulation and compute antenna size from knowledge of carrier frequency; (Tutorial: To identify different communication processes based on these two methods and appreciate their relative merit and demerit); The learner will be able to determine the carrier and message frequencies from the expression for AM signals and Angle modulated signals. Given an expression for a modulated signal, the student must be able to recognize the type of modulation. The ability to explain each and every block of the PCM system must be acquired.

Module -2: The student must be able to appreciate the importance of digital modulation over analog modulation in respect of noise immunity (concept); The student will be able to compute the coding efficiency of binary and decimal coding systems; The relative merits and demerits of the different digital modulation techniques to be understood clearly; (Tutorial: Students should be encouraged to find out where these different modulation techniques are used in everyday life); Capability to calculate signal power in digital systems to be mastered.

Module -3: Ability to compute bit rate and baud rate for different signals to be developed; the student must be able to compare between the channel capacity in case of channels of varying band-width and SNR value and predict the maximum data rate possible; The learner must be able to compare the merits and short comings of the basic digital modulation techniques. (Tutorial: Find out the area of application for each with reason for such application)

Module -4: Student will be able to calculate the information content, entropy and information rate for given situations; He/she will be able to appreciate the importance of the different line coding and error coding techniques. (Tutorial: Find out the range of applicability).
Hi I am Pluto.